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ABSTRACT

Diffusion tensor imaging provides the ability to study white matter connec-

tivity and integrity noninvasively. The information contained in the diffusion tensors

is very complex. Therefore a simple way of dealing with tensors is to compute rota-

tionally invariant scalar quantities. These scalar indices have been used to perform

population studies between controls and patients with neurological and psychiatric

disorders. Implementing the scalar values may reduce the information contained in

the whole tensor. A group analysis using the full tensors may give better estimate of

white matter changes that occur in the diseased subjects. For spatial normalization

of diffusion tensors, it is necessary to interpolate the tensor representation as well as

rotate the diffusion tensors after transformation to keep the tensors consistent with

the tissue reorientation. Existing reorientation methods cannot be directly used for

higher order diffusion models (e.g. q-ball imaging). A novel technique called gradient

rotation is introduced where the rotation is directly applied to the diffusion sensitiz-

ing gradients providing a voxel by voxel estimate of the diffusion gradients instead of

a volume of by volume estimate. The technique is validated by comparing it with an

existing method where the transformation is applied to the resulting diffusion tensors.

For better matching of diffusion tensors a novel multichannel registration method is

proposed based on a non-parametric diffeomorphic demons algorithm. The channels

used for the registration include T1-weighted volume and tensor components. A frac-

tional anisotropy (FA) channel is used for defining the contribution of each channel.
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Including the anatomical data together with the tensors, allows the registration to

accurately match the global brain shape and the underlying white matter architecture

simultaneously. Using this multichannel registration framework, 9 healthy controls

and 9 patients of Schizophrenia were spatially normalized. For the group analysis,

the tensors were transformed to log-euclidean space. Linear regression analysis was

performed on the log transformed tensors. Results show that there is a significant

difference in the anisotropy between patients and controls especially in the parts of

forceps minor, superior corona radiata, anterior limb of internal capsule and genu of

corpus callosum. The results were compared to standard FA analysis as well as GA

analysis.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Magnetic resonance diffusion tensor imaging provides an exquisitely sensitive

probe of tissue microstructure. Owing to the microscopic length scale of diffusion in

biological tissues, diffusion imaging can reveal histological architecture irresolvable by

conventional magnetic resonance imaging methods [68] [69]. It is common to perform

group analysis of diffusion tensor data based on rotationally invariant scalar indices

like fractional anisotropy (FA), relative anisotropy (RA), etc. All of the subjects for

the study are mapped to a common coordinate system, often defined by an atlas im-

age. The transformation between the space of the acquired diffusion weighted images

and the atlas space is defined via an image registration procedure. The resulting

transformation is then applied to the scalar images where the voxel values are in-

terpolated into the space of atlas image using conventional techniques such as linear

interpolation.

Using scalar indices for population based analysis of diffusion data may reduce

the statistical power and cannot detect subtle white matter changes. Potentially,

spatial normalization and analysis of full tensors can maximize the power of diffusion

tensor imaging.

In this thesis, a novel method for spatial normalization of diffusion tensors has

been developed. The method is generalized such that it can be used for other high
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order diffusion models. The first part describes a novel method for reorientation of

diffusion models after a transformation is applied. In the next part, a multichan-

nel diffeomorphic demons registration algorithm is introduced for tensor matching.

Finally, a population study consisting of Schizophrenia patients is performed. The

analysis is performed using linear regression on tensors transformed to log-euclidean

space.

1.2 Background

The human brain consists of more than 100 billion neurons and hence is

counted to be the most complex structure of our body. The complexity of the brain

could be found in such neural networks which have a versatile computational archi-

tecture [37].

Description of the brain architecture has been an area of vast research for

decades. Before the evolution of imaging techniques, different neuroanatomical meth-

ods were applied to study the brain architecture. In the early twentieth century,

techniques were based on dissecting cadaver brains. These experiments had to be

performed very carefully with immense neuroanatomical knowledge and experience.

The disadvantage of the method was that it nearly impossible to study a single white

matter tract. In 1960’s, the use of cellular transport mechanisms was applied to de-

tect the connectivity between the nerve cells. A tracer was injected in a particular

brain region, which would then travel via axons into connected brain areas [9]. Barri-

ers remained for studying human brain connectivity since the tracing mechanism was

confined for use on living animals.
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A new tract tracing method was introduced in 1970’s, which could be applied

to human cadaver brains. This method was based on the process of degeneration

due to a nerve cell injury. The degeneration includes the axon, myelin sheaths and

synapses. The process is called the Wallerian degeneration. The fiber tracts could be

visualized by staining degeneration products [9].

Methods like electron microscopy, confocal laser scanning microscopy were

implemented to learn the brain micro-structure. These techniques provide more in-

formation about the morphology of the nerve fiber at some particular points in the

brain. Quantitative aspects were considered in stereological studies of the brain white

matter. Factors like the volume of white matter, total length of nerve fibers, quantity

of fibers located in a particular tract, etc. could be estimated. This was achieved

by sampling the white matter sections manually, taking measurements and using

statistical approximations [79].

In the past 15-20 years the use of imaging techniques to study the brain struc-

ture and function has increased rapidly. Magnetic resonance imaging (MRI) tech-

niques, together with the advancement in image acquisition methods have expanded

utilization in imaging of the brain. These tools have allowed a greater understanding

of normal brain anatomy and function as well as changes associated with aging and

disease pathology.

1.3 Neural Anatomy

Neurons are physical structures in the nervous system that transmit informa-

tion through electrical excitation. In general, neurons are composed of 3 basic parts:
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(a) Cell body or soma, (b) Axons, and (c) Dendrites. The cell body is the central

part of neuron that contains the nucleus where protein synthesis occurs. The nucleus

ranges from 3 to 18 micrometers in diameter. The dendrites have many branches that

looks similar to a tree and are responsible for receiving signal and conducting it to

the cell body. Axons are long cable like structures that transmit information away

from the cell [34]. Axons lengths can vary with the longest one’s being about 3-4 feet

in length, extending from middle of the spine to the feet. Many neurons have only

one axon, which usually undergo extensive branching, enabling communication with

many target cells. The part of the axon where it emerges from the soma is called the

axon hillock. Axons and dendrites in the central nervous system are typically only

about one micrometer thick, while some in the peripheral nervous system are much

thicker. Many neurons have insulating sheaths of myelin around their axons. The

sheaths are formed by oligodendrocytes in the central nervous system. The sheath

enables the signal to travel faster than in unmyelinated axons of the same diameter,

while using less energy. The myelin sheath in peripheral nerves normally runs along

the axon in sections about 1 mm long, punctuated by unsheathed nodes of Ranvier

which contain a high density of voltage-gated ion channels [34]. Figure 1.1 shows a

typical neuronal structure.

The information flow in a neuron is directional. The incoming signals are

integrated, and if the summed signal is large enough, an outgoing signal, or action

potential, is generated.

The mobility of water to diffuse across tracts with myelinated boundaries is
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Figure 1.1: Typical neuron

restricted, causing water to diffuse anisotropically in greater amounts in directions

parallel to fiber tracts and lesser amounts of diffusion in perpendicular directions.

1.4 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is an imaging technique that is based

on the principles of nuclear magnetic resonance (NMR), a spectroscopic technique

used by scientists to obtain microscopic chemical and physical information about

molecules [36]. Felix Bloch and Edward Purcell discovered the phenomenon of mag-

netic resonance in 1946. NMR is achieved by exciting nuclei in an externally applied

magnetic field. In 1973, Lauterber used a technique called backprojection which he

borrowed from computerized x-ray tomography, and produced an image of a pair of

test tubes immersed in a vial of water [47]. In 1977, Peter Mansfield developed a

magnetic field gradient scheme called echo-planar imaging (EPI) which did not re-

quire repeated excitation-sampling cycles, effectively reducing the required imaging

time [59]. Since then Magnetic Resonance Imaging (MRI) has been used in many
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biomedical, chemical and engineering applications.

1.4.1 Nuclear Magnetic Resonance

Subatomic particles such as protons have the quantum mechanical property of

spin. Nuclear spin is the term often used to represent this total angular momentum

of a nucleus. To exhibit the property of magnetic resonance, the nucleus must have

a non-zero value of the spin angular momentum. A characteristic of a nucleus is that

with an even mass number, it has integer spin (I = 0, 1,. . . ), and a nucleus with an

odd mass number has half-integer spin (I = 1/2 ,3/2, ..). The spin angular momentum

of a nucleus with a spin number 1/2 has two energy states (+1/2, and -1/2). The

particle can undergo transition between the two energy states by absorbing a photon.

When the spins are placed in a strong external magnetic field they precess around an

axis along the direction of the field. The angular frequency of the precession is called

as the Larmor frequency ω given by equation 1.1 where γ is the gyromagnetic ratio

of the particle and B is the magnetic field strength.

ω = γB (1.1)

In an ensemble of nuclei, all the magnetic moments µ add up to give a net

magnetization M as given in equation 1.2.

M =
∑
i

µi (1.2)

When the ensemble is placed in a magnetic field, the quantization of magnetic
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moments results in parallel and antiparallel alignment [36]. At room temperature,

the number of spins in the parallel alignment, N+, slightly outnumbers the number

in the upper level, N−. The population ratio is given by the Boltzmann’s number in

equation 1.3. E is the energy difference between the spin states; k is Boltzmann’s con-

stant, 1.3805x10-23 J/Kelvin; and T is the temperature in Kelvin. This population

difference causes the longitudinal magnetization (Mz).

N+

N−
= e−

E
kT (1.3)

When a radio frequency (RF) pulse matching the Larmor frequency is applied,

it alters the state of the individual magnetic moments. The RF signal makes the mag-

netic moments precess in coherent phase, as well. A transverse magnetization (MXY )

is produced due to this in-phase precessing that rotates at the Larmor frequency.

As far as medical applications are concerned, the proton (1H) is of most inter-

est, because of its high natural abundance.

The time taken to recover the longitudinal magnetization is called as T1 pro-

cess. The loss of phase coherence in the transverse plane is called as T2 relaxation.

Because of the magnetic field inhomogeneity, the T2 decay time is shortened and

known as T∗2. The nuclear magnetization M is represented by using Bloch equations.

In the rotating frame and in the absence of any radiofrequency (RF) field the Bloch

equation is given by equation 1.4. M is the magnetization vector, γ is the gyromag-

netic ratio, r(t) is the spin position as a function of time t, g(t) is the applied magnetic

field gradient, T2 is the spin-spin relaxation time.
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dM

dt
= γr(t)g(t)− M

T2

(1.4)

1.4.2 Image Reconstruction

In order to create the MR images, a gradient magnetic field is applied. The

gradient magnetic field modifies the frequency of precession. The Larmor frequency

is dependent on the position x and given by equation 1.5. The result is a spec-

trum of frequencies based on the location where the amplitude indicates the nuclear

abundance.

ω(x) = γ(B +G(x)) (1.5)

The image reconstruction procedure consists of applying slice selection gradi-

ent, phase encoding and frequency encoding gradients. The slice selection pulse is

applied at the same time as the RF pulse and is perpendicular to the slice plane. The

phase encoding is next applied in the direction of one of the sides of the slice plane.

The frequency encoding is applied during readout and is along the other direction of

the slice plane. It should be noted that the gradient magnetic fields vary the main

magnetic field in the direction of this main magnetic field.

The free induction decays must be Fourier transformed to obtain an image

or picture of the location of spins. The signals are first Fourier transformed in one

direction to extract the frequency domain information and then in the phase encoding

direction to extract information about the locations in the phase encoding gradient
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direction [36].

1.5 Diffusion Tensor Imaging (DTI)

1.5.1 Diffusion

Although water appears static to the naked eye, at the molecular level, water

molecules are in constant random motion. This random movement is caused by the

thermal agitation of water molecules and is named ’Brownian motion’. In tissues con-

taining large number of fibers, e.g. muscle tissue and brain white matter, the motion

of water molecules is restricted resulting in preferential diffusion parallel to the fibers

as compared to perpendicular to the fibers. The path of the water molecule therefore

reflects the structure of its microscopic environment in fibrous tissues [49]. Diffusion

tensor magnetic resonance imaging (DT-MRI) measures the movement of hydrogen

atoms in these diffusing water molecules. These measurements are then utilized to

understand the white matter fiber architecture. In an unconstrained environment,

displacement of diffusing particles is equal in all directions. This type of diffusion is

called as isotropic diffusion. Measurement of diffusion is based on Einstein’s equation

which states that the mean-square displacement is proportional to the time that the

particles diffuse.

r2 = 6Dt (1.6)

In equation 1, r is the displacement, D is the diffusion constant and t is the diffusion

time. The value of 6 is introduced to account for the three dimensional nature of the

motion [90].
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Figure 1.2: Schematic diagrams four microstructures found in the brain. The black
lines are barriers to the movement of water molecules. The contours show the expected
shape of probablity density function in each tissue. (A) shows a fluid-filled region.
(B) shows isotropic grey matter. (C) and (D) show white matter with one and two
dominant fiber orientations, respectively
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The brain has a complex architecture of grey-matter areas connected by white

matter fibers.The microstructures of the brain tissues limit the random motion of the

water molecules resulting in restriction of total amount of diffusion. Figure 1.2 [5]

shows schematic diagrams of four different microstructures that appear in brain tissue

together with contours of the probablity density function that we expect to observe

within each kind of tissue. Some regions of the brain, such as the ventricles, contain

mostly cerebro-spinal fluid (CSF) and Figure 1.2(A) depicts such a fluid-filled region.

Figure 1.2(B) depicts the gray matter regions where the diffusion function is isotropic.

The brain white matter is organized in bundles of myelinated axonal fibers running

in parallel and therefore the diffusion in the direction of the fibers is faster than

the perpendicular direction [49]. This type of directionally dependent diffusion is

termed as anisotropic diffusion and shown in figure 1.2(C). Complex microstuctures

also appear in the white matter. Figure 1.2(D) shows orthogonally crossing fibers.

1.5.2 Diffusion Weighted Imaging (DWI)

A typical MR spin-echo image acquisition scheme is used with magnetic field

gradients of equal magnitude that are applied before and after the 1800 refocusing

pulse. The pulse sequence is called as pulsed gradient spin echo (PGSE).The sensi-

tivity to the diffusion of water is caused by the strong magnetic gradients. Figure 1.3

shows the pulse sequence for Diffusion Weighted Imaging (DWI). The 900 pulse ex-

cites the spins. The diffusion gradient of magnitude g and time duration δ is then

applied. The gradient gives a phase to the spins proportional to their location. The

refocusing pulse inverts the direction of the spins. The second gradient is applied
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Figure 1.3: DWI Pulse Sequence

Figure 1.4: Schematic diagram of spin phase distribution for Pulsed Gradient Spin
Echo sequence.

after time duration ∆ and is equal to the first gradient with respect to magnitude

and time. Because of the movement of water molecules between the two gradients,

the rephasing is not complete, resulting in a signal loss. Figure 1.4 shows the spin

diagram at every stage. Generally, an echo planar sequence (EPI) is employed for

DWI to reduce the acquisition time.

The Bloch equations 1.4 were modified by Torrey to include the effects of

molecular diffusion and flow to give the Bloch-Torrey equation [81]. The Bloch-

Torrey equation was solved by Stejskal and Tanner [76]. The simplified version of the

Stejkal-Tannar equation is given in 1.7. This equation allows us to relate the observed
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diffusion signal to the underlying diffusion coefficient assuming that the diffusion is

purely Gaussian.

S = S0e
−bD (1.7)

Where, S is the measured signal, S0 is the signal without diffusion weighting

gradients and b is the diffusion weighting. D is the diffusion constant and is termed

as apparent diffusion coefficient (ADC). The b-value depends upon strength and du-

ration of the gradient and also the time duration between two pulsed gradients as

described in equation,

b = γ2δ2[∆− δ

3
]g2 (1.8)

where γ is the gyromagnetic ratio, δ is the gradient pulse width, ∆ is the time between

gradient pulses, g is the strength of the diffusion gradient pulses.

Since the process of diffusion is of the order of micrometers, DTI can be called

as a macroscopic model for microscopic process [90]. The overall effect observed in a

diffusion tensor image voxel of several cubic millimeters reflects, on a statistical basis,

a Gaussian displacement distribution of the water molecules present within each voxel

[49].

1.5.3 Diffusion Tensor

In tissues like brain gray matter, it is usually sufficient to characterize the

diffusion characteristics with the apparent diffusion coefficient (ADC). However, in

white matter where the measured diffusivity is known to depend upon the orientation

of the tissue, no single ADC can characterize the orientation-dependent water mobility
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in these tissues [11]. Hence, a second rank tensor is used as a model for characterizing

diffusion as a three-dimensional process. The model is called a diffusion tensor and

is represented by a 3 x 3 symmetric tensor [68].

(D) =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1.9)

Since diffusion is encoded in the MRI signal by using magnetic field gradient

pulses, only molecular displacements occurring along the direction of gradient are vis-

ible [50]. Therefore in order to compute the diffusion tensor D , measurements must

be made with the diffusion weighting gradients in atleast six non-collinear directions

and as well as with no diffusion weighting. Therefore, diffusion tensor MRI requires a

minimum of seven MRI measurements. Most diffusion-tensor MRI sequences acquire

more than the minimum seven measurements to reduce the effects of noise. The num-

ber of gradient directions used is distributed uniformly over a sphere. Figure 1.5 [49]

shows the sampling of directions.

In general, the diffusion tensor D depends on particle mass, the structure of

the medium, and temperature [15]. In DTI, the particle mass of water molecules and

the temperature at which measurements are conducted is assumed constant. This

assumption allows for the diffusion tensor in DTI to be interpreted solely in terms of

local anatomical structure.

Geometrically, a symmetric second rank tensor can be viewed as an ellipsoid
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Figure 1.5: Sampling of diffusion directions. Conventionally, diffusion sensitizing
encoding directions are set to be uniformly distributed and a single diffusion weighting
factor is used for all directions.

characterized by the eigenvalues λ1, λ2, λ3 and their corresponding eigenvectors v1,

v2, v3 (Equation 1.10) [50]. The eigenvalues describe the shape of the ellipsoid,

while the eigenvectors express the orientation of the ellipsoid. The principle axis

is the eigenvector corresponding to the highest eigenvalue. In voxels where λ1 is

much larger than λ2 and λ3, the orientation of the primary eigenvector, v1, defines

the orientation of white matter within each voxel. Figure 1.6 shows the diffusion

tensor. The axes of the ellipsoid are oriented in the direction of the diffusion tensor

eigenvectors and have lengths proportional to the square-root of the diffusion tensor

eigenvalues.
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(D) =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 = ET


λ1 0 0

0 λ2 0

0 0 λ3

E (1.10)

Figure 1.6: The ellipsoid representing the tensor structure. The eignevalues and
eignevectors define the shape and the orientation respectively

In case of purely isotropic diffusion, λ1 ≈ λ2 ≈ λ3. Two different cases of

anisotropic diffusion can be possible. First one is called linear case or prolate case

where λ1 >> λ2 ≥ λ3 and another one is the planar case or oblate case where λ1 ≈

λ2>λ3. Figure 1.4 illustrates all 3 cases.

1.5.4 Diffusion Anisotropy Indices

Various rotationally invariant scalar measures of the diffusion tensor can be

extracted in order to summarize the geometric properties of the tensor eigensystem,

facilitate visualization on a two-dimensional plane or, enable statistical comparisons
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Figure 1.7: 3 cases of diffusion: Isotropic (Depicted by a sphere), Anisotropic Planar
or disc type or oblate and Anisotropic Linear or cigar shaped or prolate

between subjects or groups of subjects. While many such scalar measures have been

defined in the literature we will present those which that care commonly used and

also referred in this thesis: the tensor trace, the fractional anisotropy, the relative

anisotropy and the skewness. Figure 1.8 shows some of the scalar images.

1.5.4.1 Tensor Trace

The trace, T, of the diffusion tensor is simply the sum of eigenvalues. The

trace is proportional to the mean squared displacement of water molecules and thus

indicates the mobility of water molecules within each voxel.

T = λ1 + λ2 + λ3 (1.11)

1.5.4.2 Fractional Anisotropy

The FA measures the fraction of the value of the tensor that can be attributed

towards anisotropic diffusion. The FA values are normalized between 0 and 1 where

0 is the isotropic case (λ1 = λ2 =λ3) and 1 is purely anisotropic case (λ1 = c and λ2
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Figure 1.8: Axial slice showing (A) T2 weighted image (B) Trace image (C) Fractional
Anisotropy (D) Color coded Fractional Anisotropy based on direction of fibers.

= λ3 = 0).

FA =

√
3

2

√
(λ1 � λ)2 + (λ2 � λ)2 + (λ3 � λ)2√

λ2
1 + λ2

2 + λ2
3

(1.12)

1.5.4.3 Relative Anisotropy

The RA value represents the ratio of the anisotropic part of the tensor to its

isotropic part.

RA =

√
(λ1 � λ)2 + (λ2 � λ)2 + (λ3 � λ)2

√
3λ

(1.13)

1.5.4.4 Skewness

The skewness of a tensor is used to distinguish between the tensors that are

prolate (cigar-like) and oblate (disc-like). For prolate tensors the skewness value is
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greater than zero while for oblate tensors it is less than 0.

µ =
(9

2

∑3
i=1(λi −

1
3
Tr(D))3)

1
3∑3

i=1(λ
3
i )

(1.14)

1.5.5 Diffusion Tractography

Fiber tracking based on diffusion tensor imaging is an approach available to

non-invasively study the structure of white matter tracts. Basic DTI provides a

means for determining the overall orientation of white matter bundles in each voxel

by considering the principle eigenvector direction. Here, the assumptions are that the

fiber architecture in every voxel is well represented by a single vector and the noise

has negligible effect on the direction of principle eigenvector [50]. A number of fiber

tracking algorithms have been developed since the advent of DT-MRI. Two types of

approaches are prominently used for fiber tracking. The first one is streamline trac-

tography (SLT or STT) and the second one is fast marching tractography (FMT).

The SLT assumes that the direction of the principle eigenvector represents the orien-

tation of dominant axonal tracts. A variation of the SLT is tensorline tractography

(TEND) introduced by Lazar et al. The algorithm uses entire diffusion tensor to de-

flect the incoming vector [48]. Another technique developed by Mori et al. is the fiber

assignment by continuous tracking (FACT) algorithm which alters the propagation

direction at voxel boundary interfaces [60]. The fast marching algorithm developed

by Parker et al. is based on the concept of level set theory [66].
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Figure 1.9: Diffusion directions followed by STL and TEND

1.5.5.1 Streamline Tractography

The conventional white matter tractography reconstructs the pathways of

white matter tracts by starting from a seed voxel and tracking down the trajectory in

a voxel-by-voxel manner, using an estimate of the local fiber orientation determined

by the principal eigenvector in each voxel [26]. At each voxel the eigenvector corre-

sponding to the largest eigenvalue i.e. the principle eigenvector, is aligned with the

mean fiber direction in that voxel [96]. This procedure is followed until the thresh-

old is reached. The threshold used is usually the FA value. The popular streamline

tracking algorithm proposed by Basser et al. uses Euler’s approximation method to

solve the 3D path equation. The integrated path is connected as a path of one fiber

tract [68].

The streamline tracking is the most commonly used tracking algorithm. It

is easy to implement and gives good results especially where the fibers are strongly

oriented in certain direction, for example, in the corpus callosum. In the regions of
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fiber crossing, branching or merging the tensor data is difficult to interpret using this

algorithm. Tracts tend to terminate when they encounter such ambiguous regions.

Also SLT is susceptible to image noise.

The performance in the presence of noise can be improved using TEND algo-

rithm. The algorithm uses the entire diffusion tensor to deflect the incoming vector

direction as illustrated in figure 1.9. The tensor operator deflects the incoming vector

towards the major eigenvector direction, but limits the curvature of the deflection,

which should result in smoother tract reconstructions [48]. The tensorline tracking

is smoother than other algorithms but doesn’t work well if the tracts are crossing or

merging.

Another algorithm known as guided diffusion tensor tractography (GTRACT)

is capable of handling the fiber crossing problem correctly. The algorithm consists of

four steps. The first step generates an initial guess of the fiber tracts. Forward and

backward tracking is done using partial and restricted 3D graph search algorithm. The

second step performs a merging operation to form fiber bundles from the forward,

as well as the backward tracking. The outlier fibers are removed in this step. A

guide fiber is created in the third step by considering the means after resampling the

fiber bundle. The final step is to perform an improved streamline tracking where

the guide fiber direction is taken into consideration [23] Figure 1.10 compares simple

streamline tracking with the innovative GTRACT algorithm for the fiber crossing

problem which is performed on a phantom data. It can be observed that GTRACT

solves the crossover problem while SLT cannot.
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Figure 1.10: STL incorrectly tracts at the crossover while GTRACT handles the fiber
tracking problem correctly

1.5.5.2 Fast Marching Tractography

This technique developed by Parker et al., utilizes orientation of the diffusion

tensor to define speed of propagation of the interface or the front as shown in figure

3.7. The principles of level set theory and fast marching algorithm are implemented.

Starting from a user defined seed point, the rate F at which the front propagates,

is linked to the information contained in the principle eigenvector, i.e. e1 field as

shown in figure 1.11 [66]. Each iteration of the front position evolution involves

determination of the rate of propagation F(r), where r is the position of any of the

voxels that are candidates for being crossed by the front [25]. F(r) can be defined

as a measure of voxel similarity between the neighboring voxels. The similarity is

high when the principle eigenvectors of both the voxels are collinear. Hence in white

matter fiber tracts the front propagation is the fastest as there is a strong coherence

between the principle eigenvectors.
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Figure 1.11: A schematic showing FMT front in the directionally coherent white
matter. The coherence is lacking in the grey matter.

1.5.6 Applications of Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) is the only modality in MRI that is unique in

its ability to noninvasively visualize the white matter fiber tracts in vivo. Because of

such distinctive capability of this method, it serves a number of applications.

During the acute stage of brain ischemia, water diffusion is decreased in the

ischemic territory by as much as 50 percent [61]. These results were confirmed in

human stroke cases and diffusion MRI is under clinical evaluation as a tool to help

clinicians optimize their therapeutic approach to individual patients and to monitor

patient progress [89].

Diffusion imaging has been used to evaluate brain connectivity and changes in

white matter architecture during development and aging [14], [83], [74]. It has been

shown that the degree of diffusion anisotropy in white matter increases during the
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myelination process and hence diffusion MRI could be used to assess brain maturation

in children, newborns, or premature babies [62].

It has been used to study changes in white matter associated with neurological

and psychiatric diseases. Schizophrenia is the most widely investigated disorder using

DTI [45], [56], [7]. Voxel based group analysis based on diffusion scalar indices is

commonly performed. Neurodegenerative diseases like Alzheimer’s disease, Multiple

Sclerosis, leukoencephalopathy, Huntington’s disease etc. are evaluated based on voxel

based morphometry of the DTI data [98]. Reduced anisotropy in the left-tempero

parietal regions has been observed in dyslexic adults [43].

Effects of drug abuse and alcohol abuse on the white matter architecture and

density have been examined using DTI [57]. DTI has also been applied in studying

brain tumor grading [44], trauma [10], hypertensive hydrocephalus [73], AIDS [22],

eclampsia [72], leukoaraiosis [40] and migraine [21]. Other applications include study-

ing the relation between structure and function [91] and as a tool to assist in computer

guided surgery and treatment planning [17], [63], [28].

1.5.6.1 Diffusion tensor imaging and Schizophrenia

Schizophrenia is a serious and disabling mental disorder. It affects 1% of the

population and has been shown to involve a number of brain regions. Several studies

have shown changes in the structure and function of grey matter regions. Recently,

white matter anomalies have also been reported in patients with Schizophrenia. In

a study conducted by Lim et al, relative to controls, the patients with schizophrenia

exhibited lower anisotropy in white matter, despite absence of a white matter volume
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deficit [56]. Agartz et al. observed that fractional anisotropy was reduced in the

splenium of the corpus callosum and in adjacent occipital white matter. In the study

by Kubicki et al. they showed disruption in the white matter connectivity between

the frontal and temporal lobes [45]. Although the findings are varied, there could be

global and regional white matter abnormalities occuring in chronic schizophrenia. In

this thesis, we have performed statistical analysis on tensors between healthy controls

and patients with Schizophrenia.

1.5.7 Limitations of Diffusion Tensor Imaging

The diffusion imaging technique is prone to a number of artifacts that can

severely affect its ability to provide clinically useful information. The movement of

the subject inside the scanner can cause ghosting of images. Artifacts resulting from

rigid body motion are the easiest to correct for, since this involves applying a uniform

phase correction to an entire image [11]. Use of fast echo planar imaging and cardiac

gating can aid in reducing the motion artifacts like respiratory motion, eye movement

etc.

Eddy current artifacts are caused because of the rapid switching of the mag-

netic field gradients. Because of the eddy currents a small magnetic field is produced

that causes the actual b value to be different than the assumed value and also causes

geometric distortion because of the difference in the read out gradient. The eddy

current artifacts can be reduced by using bipolar diffusion encoding gradients [2].

Jezzard et al. have proposed acquiring one-dimensional field maps in the read and

phase encode direction for each slice and each diffusion step [38]. Another approach is
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Table 1.1: Length scales of the brain tissue compared with the voxelsize

Voxel size 1.0 mm3

Diffusion time 10−2sec.
Displacement of water molecules few µm

Diameter of Axons mostly 10−6 m
Packing density of axons 10−11m

to use a mutual information criterion to determine a warp that maximizes the overlap

within a series of diffusion-weighted images.

Although diffusion tensor MRI is the most popular reconstruction algorithm, it

has a major drawback. Diffusion tensors provide only one fibre-orientation estimate in

each voxel. The diffusion occurs at a micrometer scale, while generally the resoution

is such that the voxel size is between 1.0 mm3 to 8.0 mm3. Table 1.5.7 gives an idea

of the scales. In regions where fibers cross within one voxel, the probablity density

function has multiple directions. The Gaussian model has oblate ellipsoids. For a

perfectly oblate Gaussian distribution, the tensor has no unique principal eigenvector.

Sometimes the fibers do not cross orthogonally but at various angles. In such cases

implementing the tensor model can be incorrect [5].

1.6 Diffusion Q-ball Model

A limitation posed by diffusion tensor model is that it cannot resolve intravoxel

orientational heterogeneity. This is because the tensor assumes single Gaussian diffu-

sion function in each voxel. Q space imaging (QSI) can be implemented to solve the

intravoxel fiber heterogeneity by sampling the diffusion signal on a three dimensional

Cartesian lattice. Sampling on three dimensional lattice is time expensive and hence
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an alternative approach based on sampling on a spherical shell in diffusion wavevec-

tor space is employed [82]. The spherical sampling approach is referred as high

angular resolution diffusion imaging (HARDI). A model free reconstruction scheme

for HARDI has been proposed by Tuch called Q-ball imaging (QBI). The QBI re-

construction is based on a spherical tomographic inversion called the Funk Radon

transform, also known as the spherical Radon transform or simply the Funk trans-

form. The QBI has significant advantages like linearity, model independence and

ability to resolve intravoxel fiber orientations. The intravoxel orientations are defined

by a diffusion orientation distribution function (ODF). Tuch has shown that the Funk

Radon transform of the diffusion signal is proportional to the ODF. An example of

a fiber crossing region is shown in figure 1.12. In each voxel a min-max normalized

ODF is shown.

Figure 1.12: Q-Ball reconstruction using Funk-Radon Transform.
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1.7 Spatial Normalization

It is common to perform group analyses of diffusion tensor data based on

scalar indices (examples are FA or RA). The comparison is generally carried out

using region of interest (ROI) based or voxel-based methods. ROI-based methods

begin with identifying the anatomical region and are used in cases where anisotropy

change is predicted in a particular region [46] [31]. While in the voxel-based methods,

all the subjects are mapped to a common coordinate system, often defined by an

atlas image [70]. The transformation between the space of the acquired diffusion

weighted images and the atlas space is defined via an image registration procedure.

The resulting transformation is then applied to the scalar images where the voxel

values within the atlas space are interpolated using conventional techniques such

as linear interpolation. Packages like SPM [32] or FSL [75] [93] use non-linear

registration techniques to align FA data of all the subjects that is then used for group

analysis. A drawback of using voxel-based method is that imperfect registration can

lead to anatomical confounds.

Using only the scalar indices may significantly decrease the statistical power of

the group studies in detecting subtle changes in white matter architecture. Therefore

for consideration of the orientation information in diffusion image analysis, the spatial

normalization can be performed directly on the diffusion tensors or any other diffusion

model. Spatial normalization of tensors consists of two parts: registration of tensors

with the template and reorientation of tensors to be consistent with the underlying

anatomy.
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A number of methods have been proposed for tensor reorientation. Xu et al

(2003) implemented a method where the reorientation is computed from the spatial

normalization transformation and from estimating the probability density function

(PDF) of the underlying fiber orientation using a Procrustes fit [94]. Alexander et

al (2001) introduced two other reorientation techniques. The first one is the finite

strain model (FS) in which the final transformation is decomposed into a deforma-

tion component and a rigid rotation component. The rotation is accomplished by

applying the rigid rotation component to the tensor. The second method introduced

by Alexander et al. is the preservation of principal direction (PPD). In the PPD

method, the rotation is computed by both the deformation as well as rotation com-

ponents. For higher-order, non-linear transformations, Alexander et al. introduced a

reorientation technique based on the displacement field [4]. This technique estimates

a local affine model of the nonlinear transformation by computing the Jacobian of the

displacement field. An appropriate rotation matrix in each voxel is then computed

using either FS or the PPD method and applied to the tensor.

Registration of diffusion tensors can be performed directly or indirectly. In

the indirect method, the registration is driven by a scalar quantity like FA, from

which a deformation field is estimated. With the computed deformation field or

transformation function, the morphology of the diffusion tensor is deformed to fit a

template space. This transformation function can be either an affine transformation

or a nonlinear elastic warping. Recently, some work has been done in registering

the diffusion tensors directly. Alexander and Gee introduced an elastic matching
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algorithm based on tensor similarity measures. Reorientation was performed using the

preservation of principal direction (PPD) method after each iteration [3]. Zhang et al

proposed a local affine registration algorithm using the finite strain (FS) reorientation

strategy [97]. Park et al proposed a demons algorithm using tensor components with

PPD reorientation [65]. Recently, Yeo et al demonstrated that including the exact FS

differential in computation of the gradient resulted in better matching of tensors [95].

1.8 Tensor Analysis

DWI can be used to analyse neurological and psychiatric disorders by using

population atlases of the brain. Demand for statistic based group analysis methods

that can quantify the variation in brain structures has increased. A majority of the

group studies to this date use scalar indices like FA and RA for analysis [31], [18].

Scalar analysis can be either performed by manual placement of region of interest

(ROI) and computing the mean anisotropy within that region or on a voxel by voxel

statistics after coregistrating all the subjects to one space.

Analysis on scalar images does not account for the complete information

present in the tensors and requires a priori knowledge of how pathology affects the

tensors [86]. A limited number of tensor based analysis tools have been developed to

date. Many attempts to analyse the tensors were based on a Gaussian model of the

linear tensor coefficients. One of the methods developed by Jones et al. concentrated

on computing the mean median and mode of the tensor in each voxel. This was

achieved using Fréchet distance concept [39]. Another vector space based methods

include linear operations like principal component analysis (PCA).
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Figure 1.13: Figure shows the underlying manifold of the tensors. (A) Collection of
tensors whose statistical average is to be determined. (B) The underlying manifold
structure M. Linear average is given by tensor C while B gives the average on manifold

Developing methods for analysis of tensors is a complex problem since voxel

based linear statistics cannot be applied directly. Diffusion tensors are symmetric

positive definite matrices, they lie in a non-linear space and conventional vector

space techniques like averaging, interpolation, hypothesis testing etc. cannot be per-

formed [16] [52]. A good example of how the tensor non-linearity can affect the

tensor statistics is given in figure 1.13 [86]. Although tensors might appear complex,

it may have an underlying low dimensional structure.

Several groups developed a Riemannian metric framework for determining the

underlying manifold of the tensor and perform geodesic analysis [29] [67] [13]. Using

the affine invariant Riemannian metric on tensor spaces, the distance between two

tensors A and B is given by equation 1.15.

dist(A,B) = log
∥∥∥A� 1

2 .B.A�
1
2

∥∥∥ (1.15)
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Recently, Verma et al. proposed a manifold learning technique called Isomap,

that embeds the tensors in lower dimensional space that can be analysed using mul-

tivariate statistics [86].

The drawback of using the affine invariant Riemannian metrices is that they

are computationally expensive. Therefore, Arsigny et al., proposed another metric

called as the log-euclidean metric that is simple to use. The log-euclidean metric

is a Riemannian metric and therefore preserves all the properties of the tensors.

Its simplicity is such that the classical euclidean computations can be performed in

matrix logarithms [8].
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CHAPTER 2
METHODS

This research focuses on creating a generalized framework for spatial nor-

malization of diffusion models. For reorientation of the diffusion models, a novel

technique called gradient rotation is developed. In this method, rotations are ap-

plied to the diffusion sensitizing gradients providing a voxel-by-voxel estimate of the

diffusion gradients instead of a volume of by volume estimate. We have generalized

the method such that it can be used for any type of transformation. The rotation

is computed from the displacement field as described by Alexander et al (2001) [4].

Since the gradients are rotated and the gradient images are warped before comput-

ing the diffusion model, we can completely eliminate the complex problem of tensor

interpolation. Another advantage of the gradient rotation method is that, it can be

applied to higher order diffusion models like the q-ball model and diffusion kurtosis

as well as can be implemented in diffusion spectrum imaging (DSI). Kim et al (2008)

have applied gradient rotation method to q-ball data effectively [41].

A multistage registration sequence is proposed for spatial normalization of

tensors. The intersubject matching is carried out using a novel multichannel regis-

tration, based on non-parametric diffeomorphic image registration with demons algo-

rithm [84]. Our approach concentrates on alignment of gray matter areas using T1-

weighted image coupled with white matter matching using the diffusion tensor com-

ponents. The T1-weighted image serves as a morphological signature that facilitates
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to find anatomical correspondence during the registration. The coupling between the

channels is based on FA values.

Finally, the complete framework is applied to 9 controls and 9 patients of

Schizophrenia. All the subjects were spatially normalized with respect to the chosen

template subject. Analysis was performed between groups using regression methods

in log-euclidian space [55].

2.1 Gradient Rotation method

A generalized approach was implemented for transformation of the tensors via

gradient rotation using FS. Any type of transformation or deformable registration

represented by a deformation field is supported. After registration, the resulting

transformation (T) can be expressed using a displacement field (u). A local linear

transformation (F) can be described as

F = I + Ju (2.1)

Where,

Ju =
du

dx
(2.2)

is the Jacobian of the displacement field at each point x, and I is the identity matrix.

According to the polar decomposition theorem, a non-singular deformation gradient

tensor can be decomposed into the finite strain parameters of rotation and strain

tensor. Therefore transformation F can be decomposed into rotation, R, and defor-
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mation, U [4].

F = UR (2.3)

A singular value decomposition method (SVD) is then employed to obtain the rotation

tensor component, R. A local diffusion gradient at each voxel was computed using,

grot = R ∗ g (2.4)

where g is the uncorrected diffusion gradient vector and grot is the corrected local

gradient vector. For any type of transformation, i.e. linear or nonlinear, based on the

rotation matrix R, the gradient can be computed in each voxel. Standard interpola-

tion techniques can then be applied when resampling each of the diffusion weighted

images into the space of the target image. Following gradient correction, the tensor

is computed in each voxel.

Another method for reorientation of tensors proposed by Alexander et al., is

called as the preservation of principal direction (PPD) method [4]. The advantage

of using the PPD method is that it takes into consideration the shear and scale

components. The PPD method is described below:

Given a linear transformation matrix, F and a diffusion tensor D the PPD

method proceeds as follows:

1. Compute unit eigenvectors e1, e2, e3 of D.

2. Compute unit vectors n1 and n2 in the direction of Fe1 and Fe2 respectively.
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3. Compute a rotation matrix R1 that maps e1 onto n1. A secondary rotation

about n1 is required to map e2 from its position after the first rotation, R1e2 to

the n1-n2 plane.

4. Find projection P(n2) of n2 onto a plane perpendicular to R1e1. P(n2) = n2 -

(n2.n1).n1

5. Compute a second rotation R2 that rotates R1e2 onto a unit vector in the

direction of P(n2).

6. Set R = R2R1 and reorient D using equation 2.8.

Similar to the PPD method proposed by Alexander et al., the gradient rotation

method described above can be extended to take into account the scale and shear

components when estimating the rotation matrix. To extend the gradient rotation

method, a principal components analysis (PCA) is used to compute the covariance

matrix C as shown in equation 2.5.

C =
1

n

n−1∑
i=0

did
T
i (2.5)

where

di = D ∗ gi (2.6)

In the above equations, n is the number of gradient directions while D is

the apparent diffusion coefficient and gi is the gradient vector [24]. The covariance

matrix (C) is decomposed into eigensystem as shown in equation (2.7) where, Λ is a
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diagonal matrix with eigenvalues of C while E is a matrix made of three eigenvectors.

These matrices are employed in the gradient rotation PPD method as described by

Alexander et al (2001). The rotation matrix calculated from the PCA analysis is

applied to the gradients using equation (2.4).

C = ETΛE (2.7)

A multi-step evaluation study was conducted to compare the gradient rotation

methods to the traditional tensor rotations methods. First, a within subject evalua-

tion was carried out by imaging subjects multiple times with different head positions.

Next, all subjects were registered to a common coordinate system. The various meth-

ods were compared using a variety of metrics as described in the subsequent section.

2.1.1 Experiment for Validation of Gradient Rotation

Five healthy subjects underwent a multiple sequence MR imaging study that

included T1-weighted, T2-weighted and diffusion tensor imaging after informed con-

sent was obtained in accordance with the Institutional Review Board at the Univer-

sity of Iowa. The data was acquired on a 3T Siemens TIM Trio scanner using a 12

channel head coil. The T1-weighted sequence was collected using a coronal 3D mag-

netization prepared rapid gradient echo (MP-RAGE) sequence with the following pa-

rameters: TR/TE=2530/3.04 ms, TI=800 ms, flip angle=10, matrix=256x256x220,

FOV=256x256x220 mm. Diffusion tensor imaging was performed using a dual spin-

echo, echo-planar sequence with the following parameters: TR/TE=8700/86 ms,
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Figure 2.1: b=0 image collected for a single subject. A. Normal head position and
B. Head tilted by approximately 30 degrees.

matrix=128x128, FOV=256x256mm, slice thickness =2.0mm, b-value=1000s/mm2,

number of directions=64. The DTI sequence was repeated to obtain two different

datasets. During the second sequence, subjects were told to turn their head sideways

by approximately 30 degrees. The purpose of having two diffusion scans for each

subject was to test the capability of our method between these two datasets. Figure

2.1 (A and B) show an example of the two b=0 images collected for the same subject.

The DICOM diffusion-weighted image data were first converted into nrrd for-

mat(http://teem.sourceforge.net/nrrd/index.html). During this process, the Siemens

mosaic images were unpacked and the gradient directions converted into the subject

frame of reference. The diffusion weighted images were then corrected for motion and

eddy current artifacts using the GTRACT software [23]. To achieve this, the b=0 im-

age served as a reference image and all other diffusion weighted images were matched

using a mutual information metric [87] and subsequently aligned by an affine trans-
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formation. These motion correction parameters were also used to adjust the diffusion

sensitizing gradient orientation.

The second dataset b=0 image (head turned -Figure 2.1B) was co-registered

with the first dataset b=0 image (head in neutral position - Figure 2.1A) using a

rigid body transformation. For this analysis, the image with the head in the neutral

position was considered the fixed image and the image with the head rotated by 30

degrees was considered the moving image. A mean square error metric was used and

the registration was initialized using the center of mass from the fixed and moving

images. For validation of gradient rotation method, a rigid body registration was

used since this would theoretically be sufficient to achieve alignment between the

intrasubject datasets ignoring the effect of susceptibility artifacts. Figure 2.1C shows

the head turned image after warping with the deformation field.

A displacement field was computed from the resulting rigid body transform.

A rotation matrix (R) at each voxel was calculated from the displacement field using

equations (2.1) and (2.2). The gradient vector for each voxel was corrected by using

equation (4). The diffusion tensor field was then estimated using a least squares

fitting method with background thresholding at an intensity level of 80 on the b = 0

image. To apply the tensor reorientation method, the tensor field was first computed

and then tensor was rotated voxel by voxel using equation (2.8) where R is computed

using equation (2.3).

D′ = RDRT (2.8)

The resultant reoriented tensors were visually compared with the corresponding tensor
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representation obtained with neutral head position. Based on initial observations, it

was determined that the normal head orientation data was substantially more noisy as

compared to the reoriented data due to an implicit low pass filtering characteristics of

the linear interpolation during the resampling process. To account for this difference,

a diffusion weighted data in the normal head orientation was filtered using low pass

Gaussian filter with a sigma of 1mm. The sigma value was chosen empirically to

match the smoothing from resampling of the resulting tensors.

To evaluate the reorientation strategies, three different quantitative measures

were utilized. The first method computes the angle in each voxel, between the prin-

cipal direction (PD) of the reference image and PD in the transformed image. The

resulting angle signifies the relative orientation between the reoriented and reference

image. The angular separation (θ) can be computed from the dot product as shown

in equation (2.9).

θ = cos−1

{
ea1.eb1
|ea1| ∗ |eb1|

}
(2.9)

Since PD’s are prominent in white matter regions that are prolate i.e. λ1 >>

λ2 > λ3, only major prolate regions were considered in this analysis. Prolate regions

are defined as regions that contain eigenvalues with positive skewness [4]. Skewness

is given by equation 1.9. Figure 2.2 shows the prolate regions that were considered

for the analysis.

Another metric used for validation was using tensor overlap index (OVL) [12].

The OVL is defined by equation (2.10). The OVL is 0 when there is no overlap and
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Figure 2.2: Prolate regions computed from the skewness value > 0.

is 1 for complete overlap between the three principal axes of the diffusion tensors.

The average OVL of the voxels only in the prolate regions was considered after 0.2

FA thresholding was performed.

OV L =

∑3
i=1 λiλi(ei.ei)

2∑3
i=1 λiλi

(2.10)

Third type of quantitative analysis was an FA comparison. An overall average

FA value was computed from both the reorientation techniques and compared with

the reference FA map. We also checked the mean FA in the highly anisotropic corpus

callosum. The corpus callosum was segmented manually from the original FA image

using BRAINS2 [58].Figure 2.3 shows the segmented corpus callosum. This segmented

region of interest (ROI) was used as a mask for computing the average FA for both

the reorientation strategies.
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Figure 2.3: Segmentation of Corpus Callosum using BRAINS2.

2.1.2 Scan Rescan Reliability Testing

To determine the degree that noise was influencing the angular measurements,

a scan rescan study was also performed. Three healthy subjects underwent a diffu-

sion tensor imaging study after informed consent was obtained in accordance with the

Institutional Review Board at the University of Iowa. The DWI scanning protocol

described in the section 2.1.1 was used. Two repetitions of the DTI sequence were ob-

tained within a single imaging session. During this study, the subjects head was kept

in the same position for both diffusion tensor image acquisitions. The preprocessing

of the diffusion data was performed using GTRACT software as described previously.

The only difference was that each diffusion weighted image was aligned with the b=0

image from the first acquisition using a 12 parameter affine transform. The tensor

image was then computed from registered diffusion data for both the visits. The

angular dispersion and the OVL were computed between the tensors from acquisition

1 and 2.
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2.1.3 Intersubject Non-linear Registration

For the evaluation of the gradient rotation method applied to nonlinear in-

tersubject registration, the same data described in section 2.1.1 was used. One of

the five subjects was chosen as the template or reference subject and the remaining

four subjects were spatially normalized to the template subject. The preprocessing

of DTI data was performed as described in the previous section. For the T1 anatom-

ical datasets, an automated brain extraction was performed using AFNI 3dskullstrip

(http://afni.nimh.nih.gov/afni) followed by a manual cleanup using BRAINS2 [58].

The anatomical dataset was used in the subsequent image registration steps.

Figure 2.4: A multistage scheme for spatial normalization of tensors.

The idea of gradient rotation can be extended to a multi-stage registration se-

quence. The DTI b=0 image was co-registered to the anatomical T1-weighted image
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for the corresponding subject using a rigid body transformation. Mutual information

metric was used and the registration was initialized using the center of mass from the

fixed and moving images. Figure 2.1.3 shows a flow chart for spatial normalization

of the tensors. To account for intersubject heterogeneity in the brain, it is necessary

to use a high order transformation to achieve alignment across subjects. Therefore,

a diffeomorphic demons registration [84] was used to align subject T1 data and the

template T1 image. This registration was initialized using a 12 parameter affine trans-

formation. Similar to the rigid registration, the affine registration was initialized from

the center of mass. A mutual information metric was utilized and the cost function of

registration was minimized using gradient descent. The diffeomorphic demons method

is based on Thirion Demons Algorithm [80]. The Thirion demons algorithm optimizes

the displacement field space while the diffeomorphic demons algorithm optimizes the

space of diffeomorphic transformations (i.e. maps one differentiable manifold to an-

other, such that both the function and its inverse are smooth) [84]. A mean squared

error metric was utilized and geometric optimization performed on a Lie group. The

diffeomorphic registration was initialized using histogram matching between the mov-

ing and fixed image. A hierarchical registration was used with 3 levels of refinement

(32x32x32, 64x64x64, 128x128x128) corresponding to 8mm, 4mm, and 2mm isotropic

resolution. The affine registration was converted to a deformation field and used as

the initial condition for the diffeomorphic demons registration.

Two separate displacement fields were computed from the resulting transfor-

mation, one from the rigid body registration and the second from the diffeomorphic
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demons registration. These displacement fields were concatenated such that the size

and spacing was equal to the template image. A rotation matrix (R) at each voxel

was calculated from the displacement field using equations (2.1) and (2.2). The Ja-

cobian was computed from the neighboring voxel displacements. The gradient vector

at each voxel was corrected by using equation (4). The diffusion tensor field was then

estimated using a least squares fitting method with background thresholding at an

intensity value of 80 on the b = 0 image.

The quality of registration was evaluated by computing the Jaccard ratio (also

known as Tannimoto coefficient) between each subject and the template. Jaccard is

a ratio of intersection volume and union volume of the fixed image and the warped

moving image [64]. The Jaccard was calculated using BRAINS2 for both the affine

and diffeomorphic demons registrations. To access the quality of registration on the

underlying white matter architecture, the angle in each voxel, between the PD of the

template tensor image and PD in the transformed image was computed using equa-

tion (2.9) and the OVL between the PD’s was computed using equation (2.10). The

resulting angle signifies the relative orientation between the reoriented and reference

image. A comparison was performed between the angles from initial affine trans-

formation and after performing the diffeomorphic demons registration. The areas

containing only prolate tensors, based on skewness value, were considered.

Four tensor rotation methods (tensor rotation, gradient rotation, tensor PPD

and gradient rotation using PPD) were compared using the multistage registration

scheme. For the gradient rotation methods, the scheme shown in figure 2.1.3 was
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used while for tensor reorientation the rotation was applied to the tensors directly.

The comparison of the four methods was performed by computing the angle and OVL

between the reference tensor and the reoriented tensor as described in section 2.1.1.

2.1.4 Gradient rotation applied to Q-ball imaging

Preliminary test was performed on Q-ball numerical phantom data and human

data. The numerical phantom was created with orthogonally crossing fibers, using a b

value of 20000 and 64 vertices of a regularly tessalated hemisphere. Figure 2.1.4 shows

the numerical phantom overlaid on a FA map. A 45 degree rotation was applied to

the underlying FA map. The displacement field based on the rigid body registration

was used for rotating the gradients. Another test on the numerical phantom was

carried out by applying a landmark based non-linear displacement field as shown is

figure 2.1.4.

A healthy subject underwent a DTI imaging after informed consent was ob-

tained in accordance with the Institutional Review Board at the University of Iowa.

The data was acquired on a 3T Siemens TIM Trio scanner using a 12 channel head

coil. The parameters used were TR/TE =4700/114 msec, FOV=220x220 mm, ma-

trix=128x128, voxel size=1.7/1.7/4 mm, 30 slices, 64 diffusion gradient orientations

(0 and 3,000 s/mm2) with 3 averages. The DTI data was co-registered using diffeo-

morphic demons registration with a template FA image [42]. The diffusion weighted

signal vector was parameterized with spherical harmonic (SH) series (lmax=6) and

odd harmonic orders were eliminated. QBI reconstruction was performed using the

regularized analytic Funk-Radon transformation [82].
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Figure 2.5: Q-Ball Numerical phantom (A) Crossing fibers phantom (B) Original
FA (C) Rotated FA map (D) Deformed FA using non-linear deformation field (E)
Non-linear deformation field



www.manaraa.com

48

2.2 Multichannel Diffeomorphic Registration

The diffeomorphic demons algorithm proposed by Vercauteran [84] is an ex-

tension of Thirion demons algorithm [80]. The demons algorithm is based on optical

flow equation. In the demons algorithm, when registering a moving volume M with a

fixed volume F an update vector field u is computed at every iteration by minimizing

the error E with respect to u as given in equation 2.11. A closed form solution of

this minimization is given by equation 2.12. J is the gradient vector and σx is depen-

dent upon the maximum step length. The displacement field is regularized using a

gaussian kernel. The updated displacement field is computed either by using additive

method s ← s+u or by using compositive method s ← s ◦ (Id+u).

E(u) = ||F −M ◦ (s+ u)||2 +
σi

2

σx2
∗ ||u||2 (2.11)

u = − F −M ◦ s
||J ||2 + σi

2

σx
2

JT (2.12)

The non-parametric diffeomorphic demons algorithm adapts the optimization

procedure to the space of diffeomorphic transformations. This is done by implement-

ing an intrinsic update step s ← s ◦ exp(u). Constraining the transformation to be

diffeomorphic facilitates to preserve the topology and prevents folding [84]. Also,

diffeomorphic functions are bijective such that the inverse transformation is always

smooth.

We have extended the diffeomorphic demons registration to include multiple



www.manaraa.com

49

channels. Guimond et al proposed a multichannel extension for demons algorithm

that included only rotationally invariant indices. The update field for each channel

was computed seperately and then averaged. In our proposition, the coupling between

the channels is based on FA value. When computing the gradient and the speed

value, if the FA value is lower than the defined threshold, only the anatomical data

is considered while in the white matter regions, tensor components are given more

significance. The equation from Guimond et al [35]can be transformed to equation

2.13, where w indicate the weights defined for each channel based on FA thresholding.

In each iteration, when the moving image is warped, the tensors can be reoriented

using finite strain method introduced by Alexander [4].

u = − 1∑n
c=1wc

n∑
c=1

wc
Fc −Mc ◦ s
||Jc||2 + σci

2

σx
2

∗ Jc (2.13)

To evaluate the registration between each subject and the template, the rel-

ative angle and the OVL was measured. The angle measurement and the OVL are

described in section 2.1.1.

2.2.1 Validation of Multichannel Registration

5 healthy subjects were used for the validation. The scanning protocol was

as described previously in section 2.1.1. Diffusion weighted images and T1-weighted

images were acquired. The preprocessing on these images was performed as described

in section 2.1.1. One of the subjects was chosen as the template subject.

A multistage registration scheme was used for spatial normalization as shown
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Figure 2.6: A scheme for spatial normalization of tensors using multiple channels

in figure 2.2.1. In the first step of the multistage registration, DTI non-weighted (b=0)

image was co-registered to the anatomical T1-weighted image for the corresponding

subject using a rigid body transformation. A mutual information metric was used and

the registration was initialized using the center of mass from the fixed and moving

images. The rigid body transform was applied to the tensor volume. The tensors

were reoriented using the rotation matrix from the rigid body transform and the FA

volume was computed.

In the second step, the intersubject registration was carried out using multi-

channel diffeomorphic demons algorithm. This registration was initialized using a 12

parameter affine transformation between the T1-weighted volume of the subject and

T1-weighted template volume. Similar to the rigid registration, the affine registra-
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tion was initialized from the center of mass. Mutual information metric was utilized

and cost function of registration was minimized using gradient descent optimization

method. For the multichannel diffeomorphic demons registration, a vector image

consisting of 8 channels i.e. T1-weighted, FA and six tensor elements was formed.

While forming the vector image, the T1-weighted images were normalized and a his-

togram matching procedure was performed. A mean squared error metric was utilized

and geometric optimization performed on a Lie group by computing the update field

exponential. The maximum step length was defined to be 1.0 and the gradient com-

putation was based on symmetrization of the demons forces. Registration was carried

out between 7 channels i.e. T1-weighted and 6 tensor components, while the eighth

channel (FA) was only used for defining the connection between the channels. For

the regions where FA was lower than 0.2, 100 percent registration was driven by

T1- weighted data, while when FA was greater than 0.2, 40 percent registration was

based on T1-weighted and 10 percent weight was given to each tensor component.

The tensors were reoriented using the finite strain strategy at each iteration.

To evaluate the registration between each subject and the template, the rel-

ative angle and the OVL was measured. The angle measurement and the OVL are

described in section 2.1.1.

For a comparative study, we used single channel diffeomorphic demons reg-

istration between the T1-weighted images as described in section 2.1.4. We applied

the final deformation field to the tensors and then reoriented the tensors using finite

strain method. In the second case, we used a dual channel diffeomorphic demons
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registration consisting of T1-weighted and FA information. For areas with FA lower

than 0.2, T1-weighted volume was used while for areas with FA greater than 0.2, T1

and FA were weighed equally. The framework is generalized such that any number of

channels can be used and the weights can be specified.

2.3 Group Analysis

Diffusion tensor imaging (DTI) has been used to study white matter in more

detail. The purpose of this study was to evaluate gross white matter changes in

schizophrenia using DTI.

Two separate studies were performed using different populations. In the first

study, the analysis was based on FA values while in the second study the analysis was

based on the whole diffusion tensor.

2.3.1 Study using FA analysis

Before developing the novel spatial normalization technique described in sec-

tion 2.1.3, a pilot population study was performed using FA as the response variable.

Instead of performing the non-linear intersubject registration, the analysis was based

on coarse Talairach based parcellation of the white matter within the cerebral lobes

(frontal, temporal, parietal, occipital and subcortical) as shown in figure 2.3.1. Sub-

sequently a finer analysis using 1232 of the Talairach boxes was performed [78]. The

Talairach atlas is shown in 2.3.1.

For this study, 17 male patients (mean age 28.5) with schizophrenia and 21

male control subjects (mean age 29.9) were recruited into an imaging study. The
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Figure 2.7: T1 weighted image with overlaid white matter masks for the frontal (blue),
temporal (red), parietal (dark red) and occipital lobes (green) used to measure FA
values.

Figure 2.8: Figure showing all the Talairach boxes
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subjects underwent a multi-modality imaging study to obtain anatomical T1 and T2

images using a 1.5 T scanner. DTI data was acquired on a 3T Siemens Trio scanner us-

ing six directions of diffusion encoding and a b-value of 1000. The anatomical images

were processed using a standard image analysis pipeline including AC-PC alignment,

tissue classification, and automated extraction of the brain using the BRAINS [58]

software. The DTI images were analyzed using the GTRACT [23] software in a stan-

dard manner that included motion and eddy current correction, spatial filtering with

a median filter, generation of diffusion tensor, and generation of fractional anisotropy

(FA) images. The DTI data was co-registered with the AC-PC aligned T1 weighted

images using a rigid registration and a mutual information registration metric. This

was used as an initialization for a non-linear B-spline registration to correct for suscep-

tibility distortion in the images. After the images were non-linearly aligned, a lobar

Talairach based parcellation of cerebral white matter was performed and the average

anisotropy was measured within these regions (figure 2.3.1). The white matter was

defined based on the tissue classified image and limited to the cerebrum.

Ttests were carried out between the controls and patients while controlling for

age. The null hypothesis was that the fractional anisotropy (FA) values in both the

groups was equal. The second type of analysis was performed by measuring the mean

FA values in each coronal slice from anterior to posterior part of the brain as shown

in figure 2.3.1. T-tests were performed between patient and control groups.

Finally, for comparison, a more refined analysis of the FA images was con-

ducted using SPM5 and TBSS tool from FSL [75]. In SPM5 anatomical images were
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Figure 2.9: The coronal slices from A to I that were used for anterior to posterior FA
analysis.

co-registered to the MNI 152 subject average brain. The anatomical images were

coregistered using the discrete cosine nonlinear algorithm. The resulting transform

was applied to the FA images. A two group t-test was performed on a voxel by voxel

basis. While in FSL, non-linear registration was performed to align the FA data into

a common space. The mean FA image is then created and thinned to create a mean

FA skeleton which represents the centers of all tracts common to the group. Each

subject’s aligned FA data is then projected onto this skeleton and the resulting data

is fed into voxelwise cross-subject statistics [75].
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2.3.2 Study using tensor analysis

For this study, 9 patients (mean age 31.1 ) with schizophrenia and 9 control

subjects (mean age 27.42 ) were recruited into an imaging study. The subjects under-

went a multi-modality imaging study to obtain anatomical T1 and T2 images using

a 1.5 T scanner. DTI data was acquired using thirty directions of diffusion encoding

and a b-value of 1000. One of the subjects was chosen as the template subject. The

anatomical images were processed using a standard image analysis pipeline including

AC-PC alignment, tissue classification, and automated extraction of the brain using

the BRAINS [58] software.

The DICOM diffusion-weighted image data were first converted into nrrd for-

mat(http://teem.sourceforge.net/nrrd/index.html). During this process, the Siemens

mosaic images were unpacked and the gradient directions converted into the subject

frame of reference. The diffusion weighted images were then corrected for motion and

eddy current artifacts using the GTRACT software‘[23]. To achieve this, the b=0 im-

age served as a reference image and all other diffusion weighted images were matched

using a mutual information metric [87] and subsequently aligned by an affine trans-

formation. These motion correction parameters were also used to adjust the diffusion

sensitizing gradient orientation.

For the spatial normalization of tensor images, the scheme as described in

section 2.2.1 was implemented. In the first stage an intrasubject rigid registration was

performed while in the second stage a multichannel diffeomorphic demons registration

was performed. The multichannel registration was implemented using 8 channels
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(T1- weighted, FA and 6 tensor components). All the channels were weighted equally

when FA > 0.2 otherwise only T1-weighted image was considered. The registration

was carried out using 3 levels of refinement. In the first two resolution levels, only

the T1-weighted image was considered. In the last resolution level all eight channels

were considered. This procedure decreases the time required for registration and also

the tensors are not averaged at lower resolutions.

2.3.2.1 Tensor Analysis

Due to the recent development of the novel log-euclidean metric proposed by

Arsigny et al., diffusion tensors can be transformed from the nonlinear space to their

matrix logarithms in a euclidean space [8]. As in the scalar case, the matrix logarithm

is defined as the inverse of the exponential. The uniqueness and the existence of the

logarithm is not guaranteed for an invertible matrix. But the logarithm of a tensor is

well-defined and is a symmetric matrix. Conversely, the exponential of any symmetric

matrix yields a tensor. This means that under the matrix exponentiation operation,

there is a one-to-one correspondence between symmetric matrices and tensors [8].

Based on this property, a vector based structure on the tensors can be defined.

The logarithm of a tensor can be computed by decomposing the tensor into

its eigenvalues and eigenvectors. Taking the natural logarithm of the eigenvalues

and then composing the eigenvectors and the diagonal eigenvalue matrix gives the

logarithm of the original tensor. Based on this easy computation, tensor interpolation,

averaging etc can be defined. Equation 2.14 shows the logarithmic multiplication
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between two tensors S1 and S2 defined by �.

S1 � S2 = exp(log(S1) + log(S2)) (2.14)

A simple similarity invariant log-euclidean metric is given by equation 2.15. Con-

trary to the affine-invariant case [30], the processing of tensors in the Log-Euclidean

framework is simply Euclidean in the logarithmic domain.

dist(S1, S2) = Trace((log(S1) + log(S2))
2)

1
2 (2.15)

For simplifying the computations, the tensor matrix can be considered as a

6-D vector and the logarithm can be computed as shown in equation 2.16.

log(S) = [log(S)1,1, log(S)2,2, log(S)3,3,
√

2.log(S)1,2,
√

2.log(S)1,3,
√

2.log(S)2,3]
T

(2.16)

For the group analysis of diffusion tensors, a linear regression model with the

log transformed diffusion tensors as responses, is used [55]. If n number of subjects

are used in the analysis, we get n tensors from the corresponding voxel of the spatially

normalized data. If we compute the logarithm of each tensor by using equation 2.16,

a linear model for such a tensor Si, i = 1, .. n, is given by Equation 2.17.

log(Si) = βxi + εi (2.17)
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where,

βT = [β1, ....β6] (2.18)

is a px6 matrix representing the regression coefficients. εi is the error given by,

εi = [εi(1,1), ε
i
(2,2), ε

i
(3,3), ε

i
(1,2), ε

i
(1,3), ε

i
(2,3)]

T (2.19)

xi is a px1 vector that contains clinical variables like age, gender etc. An simple linear

regression model is as given in equation 2.20. If two groups are compared, then we

can set xi such that 1 corresponds to the intercept and δ in an indicator of one of the

groups.

log(Si) =


β1,1 β1,2

: :

β6,1 β6,2


 1

δ

+ εi (2.20)

A hypothesis testing was carried out to understand the differences between

the controls and patients. Based on the method proposed by Li et al., the linear

hypothesis was given as shown in equation 2.21 [55].

H0 : Rβ = b0 vs. H1 : Rβ 6= b0 (2.21)

where β is a 6p x 1 vector, R is an rx6p matrix of full row rank and b0 is an r x

1 specified vector [55]. Details for computing the test score statistics can be found

in [55], [54].



www.manaraa.com

60

The tensor analysis was performed on the spatially normalized tensors de-

scribed in section 2.3. All the tensor images were masked using a binary mask com-

puted from the template T1-weighted volume.

Full diffusion tensors were treated as response and the model given in equa-

tion 2.20 was chosen. The δ value for controls was 0 while for patients with Schizophre-

nia it was 1. Here R was 6x12 matrix while b0 = (0,0,0,0,0,0)T for the hypothesis.

The uncorrected p-values < 0.01 were mapped on the MNI- template brain and then

clustered using afni (http://afni.nimh.nih.gov/afni).

We compared the tensor results using an equivalent FA study. The FA images

of all the controls and patients used in tensor analysis, were used in voxel-wise group

analysis performed using FSL software [75]. This was done to verify the results given

by the log-euclidean tensor analysis.

Another comparison was performed using the Geodesic Anisotropy (GA) in-

dex. The geodesic anisotropy measure is derived from the tensor manifold metric.

The GA that is implemented in our analysis, was computed using the log-euclidean

metric [51]. GA index was used an alternative scalar measure to compare the results

from the tensor analysis and the FA analysis. Equation 2.22 defines the GA of a

tensor. The GA value can be normalized by computing its hyperbolic tangent value

as given in equation 2.24 [13]. A voxel-wise t-test was performed between the con-

trols and the patients based on GA values. A false positive correction was performed

by using false discovery rates (FDR) method. The areas where q-value < 0.05 were

clustered and mapped in the MNI space using afni (http://afni.nimh.nih.gov/afni).



www.manaraa.com

61

GA(S) =
√

(Trace(log(S)− < log(S) > I)2) (2.22)

where,

< log(S) >=
Trace(log(S))

3
(2.23)

tGA = tanh(GA) (2.24)

2.4 Data Sharing

The complete framework that includes multichannel registration and gradi-

ent rotation is an open source package written using ITK and is available from

the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) website,

(http://www.nitrc.org/projects/diffusionwarp). This resource will be used to house

all of the source code using the SVN features, distribution binary and source code

releases, and documentation for the tool. The bug tracking and mailing list features

from the NITRC website will be utilized to support the software development pro-

cess and to announce new features and releases of the software. The software will be

licensed using a BSD style license allowing commercial system to integrate this tool

within their products.
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CHAPTER 3
RESULTS

3.1 Gradient Rotation

3.1.1 Intra-subject Gradient Rotation Validation

Figure 2.1.1(C) shows the quality of registration used for the intra-subject

gradient and tensor rotation methods. The reference image tensor representation of

the DWI data from the first sequence (head in normal position) is shown in Figure

2.1.1(A). Qualitatively the two methods produce similar results and generate tensors

that are similar to the reference data. Figure 3.1 shows the tensor representation of

when gradient rotation is applied ( 3.1(B))and when tensor reorientation is applied

( 3.1(C)) compared to the reference ( 3.1(A)).

Figure 3.1: Tensor representation of A. Reference image B. After applying gradient
rotation and C. After applying tensor reorientation
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Figure 3.2 shows the tensor representation of the genu of corpus callosum

for one of the subjects. Figure 3.2(A) illustrates the original tensor computed from

the normal head position. The tensor was smoothed using a gaussian filter with σ

=1. Figure 3.2(B) shows the image rotated when no tensor reorientation was applied.

Figure 3.2(C) demonstrates the results from the gradient rotation method while figure

3.2(D) illustrates the tensor reorientation method.

Figure 3.2: Axial tensor glyph maps of the genu of corpus callosum. (A) Original
tensor from DWI dataset. (B) Without any reorientation applied. (C) Results from
gradient rotation method and (D) tensor reorientation.

The average angular separation between the reoriented tensor and the refer-

ence tensor was computed for both the reorientation techniques. For the gradient
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Figure 3.3: Plot of average angular deviation for each subject using the two compar-
ative reorientation methods.

rotation method, the average value was 10.18◦ across all 5 subjects while for tensor

reorientation the average value was 10.16◦. Figure 3.3 shows the angular deviation for

each subject using gradient rotation and tensor reorientation techniques. The average

OVL for both the methods was 0.89.

Table 3.1: Average and Standard deviation in FA for all 5 subjects

- Reference Tensor Gradient Rotation Tensor Reorientation
Average FA 0.359 0.34 0.345

Std. Dev 0.006 0.0065 0.007
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Figure 3.4: Comparison using FA maps of a subject (A) FA in normal head position
(reference image) (B) FA after gradient rotation, and (C) FA after tensor reorienta-
tion.

The methods were also compared using the FA scalar measures. Figure 3.4

shows the FA maps of the original tensor and the two reorientation methods. Ta-

ble 3.1 shows the average FA values. This indicates that the average FA values from

the reorientation techniques are comparable to the original FA. No significant differ-

ences were found between the resulting FA values from gradient rotation and tensor

reorientation (p = 0.31). Figure 3.5 shows the FA values in the corpus callosum for

both reorientation methods compared with the reference image. The standard devia-

tion for each case is indicated with error bars in the graph. Results indicate that the

FA values after transformation are comparable with the reference image FA values in

corpus callosum.
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Figure 3.5: Plot of average FA in corpus callosum for 5 subjects. The 3 cases, i.e.
reference, gradient rotation and tensor reorientation are shown. The error bars show
the standard deviation of the FA values within the corpus callosum for each subject.

3.1.2 Scan-Rescan Reliability Testing

Figure 3.6(A, B) show the principal eigenvector image for one of the subjects

scanned with separate acquisitions. The images reflect the results after registering

with the b=0 image from the first acquisition. The average angle between any two

visits for 3 subjects is 9.17◦ with an average OVL = 0.9 without using any type of

reorientation technique.

3.1.3 Intersubject Registration with Gradient Rotation

Figure 3.7(A and B) show the resulting rigid registration between the diffusion

weighted images and T1 weighted anatomical images. Figure 3.7(C and D) show the

diffeomorphic registration between T1 image of a subject and the template image.

The moving image resampled into the space of the fixed image is shown in 3.7(C) while



www.manaraa.com

67

Figure 3.6: Results of scan-rescan reliability testing. (A, B): Principal eigenvector
images after registration with T1 for visit 1 and visit 2 respectively for one of the
subjects.

the template image is illustrated in 3.7(D). Figure 3.8 shows the principal eigenvector

image of the gold standard reference image 3.8(A), and the principal eigenvector

images of spatially normalized tensors for 4 subjects using gradient rotation in 3.8(B-

E).

3.1.4 Comparison between all the reorientation methods

Qualitative results of the resulting tensor orientation for all four tensor ro-

tation methods are a shown in an axial slice containing the genu and splenium of

the corpus callosum (Figure 3.9). It can be observed that the tensors appear to be

aligned consistently with the underlying white matter fiber orientation in all four

cases. The results for the tensor overlap index and angular difference are shown in

Figure 3.10(A). It can be observed that the tensor overlap is higher for the PPD
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Figure 3.7: Quality of Registration (A) DTI b=0 resampled image after rigid regis-
tration (B) Fixed image (T1). (C) T1 resampled image after diffeomorphic demons
registration. (D) Template or Reference T1 image.

Figure 3.8: (A). Principal eigenvector image of the template (reference subject), and
the four subject after registration with the template subject (B, C, D, E). Princi-
pal eigenvector images of the four spatially normalized subjects with respect to the
reference image.
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methods as compared to the rotation only methods. The average angular difference

between the four subjects and the template image is plotted in Figure 3.10(B). The

angular error after affine transformation is much higher compared to after nonlinear

registration. The angle after diffeomorphic demons is approximately 21◦ (OVL =

0.76) for the rigid rotation methods (gradient rotation and tensor rotation) while it

is approximately 19◦ (OVL =0.786) for both of the PPD methods.

Figure 3.9: Primary eigenvector images color coded for the four reorientation methods
from one of the subjects after the multistage registration for all the methods. (GR)
Gradient Rotation, (G-PPD) Gradient rotation using PPD, (TR) Tensor rotation,
(T-PPD) Tensor rotation using PPD

3.1.5 Gradient Rotation applied to Q-ball imaging

Figure 3.11 shows the results for the numerical phantom data. For the human

data figure 3.12 shows the Q-ball reconstruction before and after gradient rotation.
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Figure 3.10: Plot of the overlap index (OVL) for four subjects as compared to the
template image. Higher OVL values correspond to improved registration. Results are
shown for the tensor rotation (TR), gradient rotation (GR), tensor PPD (T-PPD),
and gradient rotation with PPD (G-PPD). (B). Plot of the average angular difference
for the four methods. The first column shows the angular difference when only affine
registration is used with gradient rotation. The other four columns show the results
of using the diffeomorphic demons registration and each of the rotation methods.

Figure 3.11: Results for q-ball model after using gradient rotation. (A) Original
phantom (B) After rigid rotation (C) After nonlinear deformation
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Figure 3.12: Results for q-ball model (A) Before (B) After gradient rotation

3.2 Multichannel Diffeomorphic Demons Registration

The tensor representation for one of the subject after registration is shown in

figure 3.11. The single channel, dual channel and multichannel registration results

are shown in figure 3.11(A, B, and C) respectively. Figure 3.11(D) is the fixed image.

The average angle for four subjects using the single channel registration was 21◦,

for dual channel it was 20◦ and for multichannel registration the angle was reduced

to 18.19◦. Figure 3.12 shows the plot of average OVL for four subjects using the

three comparative registration methods. It can be seen clearly, that the tensors

overlap better when seven channels are used together. This can be shown by using

a t-test between multichannel registration and the other two methods. The OVL

values with multichannel registration were significantly greater than the single channel

( p=0.0119). A similar trend was observed when compared to the dual channel
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registration that involved T1-weighted data and FA together (p=0.087).

Figure 3.13: Registration results compared with the fixed image. (A) single chan-
nel result, (B)dual channel result, (C) multichannel result and (D) fixed image.
(E,F,G,H) show the part of Genu from the four figures above. It can be observed
that the results from multichannel registration closely match with the fixed image

3.3 Group Analysis of Controls and Patients with Schizophrenia

3.3.1 Pilot Analysis using FA

The results for the coarse Talairach lobar parcellation are shown in table 3.2.

After analyzing the 1232 Talairach boxes, significant changes in FA were ob-

served in different parts of the brain. In the temporal and parietal lobe, reduction in

FA was observed around the calcarine sulcus, right precuneus and the white matter

bordering the insula. In the frontal lobe, although overall changes were not observed,

the middle frontal gyrus and the left gyrus cingulate did show significant FA reduc-
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Figure 3.14: Plot of OVL for each subject using different types of registration.

Table 3.2: Table showing p-values for changes in FA in the brain lobes

Region Left p-value Right p-value
Frontal 0.965 0.431

temporal 0.072 0.034
parietal 0.021 0.014
occipital 0.158 0.189
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tion.

Figure 3.15 shows the coronal sections from A to I that were considered for

the anterior to posterior analysis. From the results it was observed that FA values

reduced significantly in the parietal and temporal areas of the brain. These results

match the lobar Talairach analysis since significant FA reduction was observed in the

parietal and temporal lobes. Figure 3.15(A), (B) and (C) show the average anisotropy

values in overall brain, right side and left side respectively.

The results after voxelwise FA analysis was performed using SPM are shown

in figure 3.16. The regions that showed significant FA change included the anterior

portion of the corona radiata and internal capsule (figure 3.16(A)) and also cere-

bellar vermis and inferior temporal lobe (figure 3.16(B)). There were no significant

changes found in the FA values between the controls and patients using FSL, although

differences are seen in the Talairach and SPM analysis.

3.3.2 Group Analysis using full diffusion tensors

Figure 3.17 shows the spatial normalization for 2 of the given subjects. Fig-

ure 3.17(A) is the reference subject. Figures 3.17(B) is a control and figure 3.17(C)

is a patient. The quantitative analysis shows how well the subjects align with the

template. Table 3.3 illustrates the average OVL and dispersion angle for each subject.

The results for the tensor analysis performed using linear regression on tensors

in log-euclidean space as shown in figure 3.18. The significant raw p-values (below

0.01) were clustered and mapped on the MNI space using afni. Figure 3.18 shows

the significant regions colored in orange. Figure 3.18(A) shows significant regions in
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Figure 3.15: FA from anterior to posterior for controls (pink) and patients (blue).
The p-values are indicated by red line. (A) Overall brain (B) Right side and (C) Left
side
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Figure 3.16: Results from SPM analysis showing the voxels with an uncorrected p
value ≤ 0.001.

Figure 3.17: Figure shows the results of spatial normalization performed on controls
and patients of Schizophrenia. The template image is shown in (A). As an illustration
one of the controls is shown in (B) and one patient is shown in (C)
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Table 3.3: Table showing the values of angular dispersion and tensor overlap index
for 9 controls and 9 patients

Subject Angle (◦) OVL
template – –
control 2 20.77 0.77
control 3 21.01 0.766
control 4 21.43 0.783
control 5 20.54 0.78
control 6 20.1 0.792
control 7 19.84 0.79
control 8 21.02 0.77
control 9 19.15 0.79
patient 1 21.63 0.77
patient 2 20.65 0.78
patient 3 21.24 0.777
patient 4 20.15 0.77
patient 5 20.77 0.76
patient 6 21.01 0.76
patient 7 22.18 0.746
patient 8 19.47 0.81
patient 9 20.01 0.787

Table 3.4: Table showing the mean and standard deviation of p-values in four clusters

Cluster Mean Std. Deviation
cluster 1 0.008 0.0012
cluster 2 0.0051 0.0013
cluster 3 0.0032 0.0011
cluster 4 0.0028 0.0013
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the posterior corona radiata that relate to the primary motor cortex. Figure 3.18(B)

shows some significant regions near the ventricles and the posterior end of corona

radiata. In figure 3.18(C) white matter changes are specifically observed in the forceps

minor (right), anterior limb of the internal capsule and posterior corona radiata.

Figure 3.18(D) shows the significant areas that can be identified as part of genu of

the corpus callosum and the forceps minor(left). A statistics on four of the major

clusters is given in table 3.4. The mean and standard deviation of the p-values for

each cluster were computed using afni.

Figure 3.18: Clustered p-values below 0.01. The orange clusters show the significant
regions that account for the changes in white matter anisotropy between the controls
and patients after performing log-euclidean tensor analysis.

The results from the FA analysis using FSL are shown in figure 3.19. It can be

observed that the FA reduces in patients in the areas colored red in figure 3.19. The

areas can be identified as genu of the corpus callosum and the forceps minor. There

were no areas where the FA in patients increased significantly.
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Figure 3.19: FA analysis using FSL. Red areas are the areas where FA is significantly
lower in patients than controls.

Figure 3.20: GA analysis performed between the spatially normalized controls and
patients. Green areas signify the differences between the two groups.

The GA analysis results are shown in figure 3.20. The results from the t-test

between the groups were corrected using false discovery rates. The significant areas

with z-score higher than the threshold of 5 are shown in green in figure 3.20. In

figure 3.20(A), the significant area can be identified as right posterior part of corona

radiata. Other regions where a significant difference was observed are portions of

genu and splenium of the corpus callosum as shown in figure 3.20(B), parts of anterior
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corona radiata and forceps minor as shown in figure 3.20(C) and (D).
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CHAPTER 4
DISCUSSION

In contrast to traditional MRI where the white matter appears homogeneous,

diffusion imaging has the power to provide white matter architecture information.

DTI takes advantage of the microscopic diffusion of water molecules, which is less

restricted along the axis of a fiber than along its transverse direction. Tensor images

are usually acquired by applying at least six non-collinear gradient orientations, and

thus measuring a symmetric tensor in each voxel. The capability of diffusion tensor

imaging can be implemented in studying effects of certain neurological disorders,

development and aging.

The information contained in the diffusion tensors is very complex. There-

fore a simple way of dealing with tensors is to compute rotationally invariant scalar

quantities. Numerous population based studies have used scalar quantities like FA,

RA, Volume ratio, Trace, eigenvalues etc. to discover the differences in the axonal

architecture [45], [56], [7], [22], [73], [44], [10], [40].

By using scalar quantities for population based studies, the maximum power of

diffusion tensor imaging may not be utilized in making scientific conclusions. There-

fore a precise spatial normalization and interpretation focusing on the properties of

diffusion tensors is required.

It is more complicated to apply spatial normalization to tensor fields than to

scalar images. This is because the tensor must be reoriented on each image voxel, in
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addition to a voxel displacement that is implied by the spatial normalization trans-

formation [94].

In this thesis, a novel method for reorientation of tensors was proposed. In

this method, rotations are applied to the diffusion sensitizing gradients providing a

voxel-by-voxel estimate of the diffusion gradients instead of a volume of by volume

estimate. The advantages of using the gradient rotation method are:

1. It can be applied directly to higher order models like q-ball model and high

order tensors.

2. It eliminates the complex problem of tensor interpolation.

The rotation matrix computation is based on work by Alexander et al. [4].

Alexander, in his paper described two separate methods for computing the rotation

matrix. One of the method was called as the finite strain method described in sec-

tion 2.1. The other method was called as the preservation of principal direction

(PPD) that included the shearing and stretching parameters in the rotation matrix

computation. The algorithm for PPD is given in 2.1. The gradient rotation was build

on both the reorientation techniques described by Alexander.

Validation of gradient rotation method was performed using a simple case of

head rotation in the x-y plane. The gradients were rotated on a voxel by voxel basis,

changing the b- matrix in each voxel, using an estimate of the rotation computed from

the displacement field. For assessing gradient rotation method, relative orientations

in the corresponding locations between the transformed tensors and the reference
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tensor were observed. The method was also compared with Alexander’s finite strain

tensor reorientation method. The intrasubject average angular dispersion was around

10◦ for both the reorientation methods. Results are shown in section 3.1.1.

Looking at the intrasubject results, one may think that the average angular

dispersion of 10◦ is very high. This is due to the low SNR of the diffusion images. To

prove this a scan rescan reliability testing was performed using the same protocol as

was used for the validation study described in section 3.1.1. All the gradient images

from the second visit were aligned with the non-weighted image from the first visit.

The average angular dispersion between the two visits was approximately 9◦. If we go

back in literature, a similar trend can be seen in the work performed by Alexander et

al [4]. When the finite strain reorientation and the PPD reorientation was performed

on numerical phantom data with no added noise, the resulting angular dispersion

in the prolate regions was close to zero. But when a human dataset was used, the

angular dispersion is between 8◦ to 11◦ for both the methods. Figure 4 shows the

results from Alexander et al. Another study by Jones et al (2002) computed tensor

dispersion plots, which showed a poor tensor overlap in the sub-cortical white matter

regions [39].

A multistage registration scheme for the spatial normalization of tensors is

proposed. The procedure is described in section 2.1.3. An example was illustrated

using 5 subjects, one of them being the template subject. A simple rigid transform

was used between the b=0 image and the T1 image while a nonlinear diffeomorphic

demons registration was used for intersubject registration. The displacement fields
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Figure 4.1: Comparative results from Alexander et al. (A) Numerical phantom (B)
Human data

were concatenated from the two transforms and used for gradient rotation. The

tensors were computed after gradient rotation was performed. Quantitative validation

shows that the angle reduces after using diffeomorphic demons registration.

It has been shown by Alexander that the PPD method is more effective than

rigid rotation since shear and scale are considered while using PPD. Gradient rotation

can be extended to PPD using principal component analysis. We compared the ex-

isting methods of tensor rotation and PPD on tensors with the new gradient rotation

and PPD with gradient rotation methods using the multistage registration scheme.

The resulting angular separation was approximately 21◦ while it was slightly less -

19◦ for PPD methods since it accounts for shear and scale.

In recent years, more and more research groups are focusing high order dif-

fusion models. This is because the tensor provides only a single fiber orientation

estimate in each voxel and fails at fiber crossings. The gradient rotation method can
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contribute in spatial normalization of these models.

While the overall global shape change has been minimized, there are still

significant differences in the underlying white matter fiber architecture that need to

be addressed. The registration method for tensors should be such that it can match

the spatial location of white matter structures i.e. the fiber bundles correctly. Hence

the registration should include the detection of anatomical correspondences as well.

Many tensor registration algorithms have been proposed upto this date [3],

[95], [35], [65], [20], [97], [99], [53]. Many of these algorithms eliminate the

complexity posed by tensor reorientation, by using scalar features. For example,

Guimond et al., have used only scalar values like FA, trace etc. in the matching

process. The output displacement field is applied to the tensors. They show that

this orientation independent approach qualitatively compares in performance with

an implementation of full tensor (plus T2-weighted intensity) registration with finite-

strain reorientation and outperforms scalar registration using only the T2-weighted

information [33]. Ziyan et al., have made use of fibers extracted through tractogra-

phy [99] while Leemans et al. match the diffusion weighted images and then compute

the tensor [53]. Some methods register actual tensor images, but do not reorient the

tensor during registration [71].

Alexander and Gee [3] introduced an elastic matching algorithm based on

tensor similarity measures. Reorientation was performed using the preservation of

principal direction (PPD) method after each iteration. The similarity measures al-

low structural data to be considered with the tensor information by averaging the
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similarities from two modalities. Zhang et al., proposed a novel piecewise local affine

registration algorithm to register tensor images using finite strain reorientation [97].

The tensor image is divided into uniform regions and transform each region affinely.

The rotation component is explicitly optimized for improving the registration. The

pieces are then fused together and a smooth warp field is generated. The drawback of

this method is that it does not take into consideration any structural marker and it

is unclear if any optimality is lost in fusing the transformations [95]. Verma and Da-

vatzikos [85] proposed a multichannel characterization of the diffusion data at a voxel

to facilitate correspondence detection, where the features are obtained by applying a

novel Gabor filter.

Park et al. [65] further examined Guimonds multi-channel method and find

instead that the use of all tensor components together with PPD reorientation yields

the most reliable registration results. The different combination of channels that was

included for the registration of real and synthetic diffusion data was: T2-weighted

intensity alone; fractional anisotropy alone; difference of the first and second tensor

eigenvalues; fractional anisotropy together with trace of the tensor; all three tensor

eigenvalues; and the 6 independent tensor components.

In this thesis, a novel multichannel registration based on non-parametric dif-

feomorphic image registration coupled with demons algorithm is proposed. Our ap-

proach concentrates on alignment of gray matter areas using the T1-weighted image

and white matter using the tensor information generated from the diffusion weighted

images. Section 2.2 describes the complete procedure used for registration of the ten-
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sors. The registration procedure that we implemented has two advantages over the

registration proposed by Park et al. Firstly, we include T1-weighted data along with

the tensors. During the registration the contribution from each channel is defined by

the FA threshold. This gives a morphological indication while matching the tensors.

Secondly, since we use the diffeomorphic demons registration [84] the update vector

field is constrained to be diffeomorphic. The difference can be observed through the

tensor overlap results. Section 3.2 shows the results using multichannel diffeomorphic

demons registration. The average overlap for 4 subjects is around 0.8 compared to

the results by Park et al., where the overlap is approximately 0.65.

While using multichannel registration, our framework is generalized such that

it can accommodate more channels or a combination of different channels. Other

scalar indices like FA, trace, RA, eigenvalues etc. can be used along with the tensor

components. The limitation of multichannel registration with tensor reorientation

performed at each iteration is that it can be time consuming. A way around is

to perform only T1-weighted registration in the first two resolution levels and then

include all the channels in the final resolution level.

Curran and Alexander developed a method in which the tensor rotation com-

ponent was optimized as well [27]. By using a synthetic data it was demonstrated that

the tensor matching improved. In the future we would like to include the reorientation

parameter in computation of the gradient.

Finally, we have applied the spatial normalization method for a population

study. 9 controls and 9 patients with Schizophrenia were chosen for the study. One of
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the subjects was chosen as the template image. The multistage registration framework

described in section 2.2 was applied to all the subjects.

Tensor analysis is a complicated problem since the tensors do not lie in a vec-

tor space. Therefore it is not as straight forward as applying usual euclidean methods

for performing analysis. Groups like Fletcher et al., Pennac et al. discovered that

tensors lie on a non-linear manifold called as the Reimannian manifold [30], [67]. Ten-

sor average, interpolation and hypothesis testing can be performed on the manifold.

Although the results are accurate, this method is computationally expensive. Asigny

et al. showed that instead a log-euclidean manifold can be used with equal accuracy

and less computations [8].

Here we implemented the log-euclidean method developed by Arsigny on a

control and patient group. The regression analysis in log-euclidean space was per-

formed as described in section 2.3.2.1 [55]. Results show that there is a significant

difference in the anisotropy in the anterior regions of the brain that include the ar-

eas near the ventricles, superior corona radiata, forceps minor, anterior limb of the

internal capsule and genu of the corpus callosum.

The results were verified by implementing voxel-wise analysis on FA images

and GA images. The FA analysis did not show as many significant areas as the

tensor analysis, the change was significantly observed in frontal areas of the brain. A

reduction in FA was observed in the patients in the genu of the corpus callosum and

the forceps minor. Significant differences in the anisotropy were observed using GA

analysis. The regions include parts of genu and splenium of corpus callosum, anterior
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corona radiata and forceps minor.

A lot of studies that involve group analysis between control and schizophrenia

patients have been performed in the recent past. Some groups like Buchsbaum et al.,

Wolkin et al., have reported similar findings i.e. changes in anisotropy in the anterior

regions of brain [18], [92] and FA reduction has been observed in the anterior cingulum

by Wang et al., and Sun et al. [88], [77]. Changes in the sub-cortical regions like white

matter around thalamus were reported by Andreasen et al., based on T1-weighted

data [6]. Research groups like Burns et al., Kubicki et al., found out that there was

white matter disruption in the uncinate fasciculus leading to the conclusion that a

fronto-temporal disconnectivity existed in patients with schizophrenia [19], [46].

Other groups have observed that the reduction in FA is mostly in the posterior

parts of the brain. For example, Foong et al. and Agartz et al., observed a change

in the FA values in the splenium of the corpus callosum but did not see any changes

in the genu of the corpus callosum [31], [1]. Lim et al., found that schizophrenic

patients exhibited widespread lower FA in the white matter, extending from frontal

to occipital areas [57]. The variation in results may be due to the sample size used

and the methodology implemented for the analysis.

We have verified that the results from tensor analysis with FA and GA analysis.

Although there is a lot of variation in the results from the comparative methods, some

regions like the parts of forceps minor were found to be significant using all three

types of analyses. The difference between these methods could be the result of more

sensitivity of the tensor as a response function or GA being a hyperbolic tangent
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function when compared with FA. There’s not enough study from which one can

know how much sensitive tensor analysis could be when compared with the standard

FA analysis between groups. There is still scope for research that compares results

from different analyses. Also various tensor analysis methods like log-euclidean and

Reimannian methods should be compared between each other using a particular group

of patients and controls.
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CHAPTER 5
CONCLUSION

In this thesis, a novel spatial normalization technique for diffusion tensors

has been proposed. Tensor analysis between groups has been performed using the

log-euclidean method.

In the first part the framework for gradient rotation method is described. The

framework is such that it can be used for tensors as well as higher order models like

q-ball data and high order tensors. Using the gradient rotation method, eliminates

the complex problem of tensor interpolation that is under research for a decade.

In the second part, a multistage registration scheme for spatial normalization

of tensors is described. The intersubject registration is carried out using multiple

channels. The contribution from each channel is defined by the FA threshold. Using

T1-weighted data with the tensors, helps in aliging the white matter regions as well

as the gray matter regions.

In the last part a population study between controls and Schizophrenic patients

is performed. The analysis is performed by converting the tensors to log-euclidean

space. Our findings suggest an overall reduction in white matter organization, the

deficits appear to be greater in the anterior portion of the brain than the posterior

part.

The potential of this package is such that it can be used for population stud-

ies that involve hundreds of control and patient data. Different types of disorders



www.manaraa.com

92

like Alzeimers, multiple sclerosis, huntington’s disease etc. can be can be analysed

using the proposed method. Although the method is not too complicated and the

computation time is moderate, the output is decent.

Future work involves applying the multi-channel registration to q-ball volumes

and include gradient rotation in the registration. Studying the sensitivity of different

tensor analyses methods is required.
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